Contextualized Transfer Learning

Transforming Heterogeneity into Predictive Power with Generative Latent Structures in Resource-Limited Settings

Siddharth Nirgudkar

Mentor: Dr. Ben Lengerich

Acton-Boxborough Regional High School

MIT PRIMES October Conference: 10/12/2024

01 Preliminaries

Introduction to Personalized Medicine

Patient Specific Understanding

The Response: Contextualized Learning

Resource Scarcity in Biomedical Contexts

Data Availability

- Hospitals only have a small, local amount of information to make triage decisions
 - Covid
 - ICU Availability
 - Treatment Priorities

Biological Availability

- Very hard to take samples from organs
- Some organs (like the brain) can only be observed once postmortem

General Problem

This seemingly medical problem turned into a...

Generative Modeling Contextualized Learning

... general information sharing problem

Current Transfer Learning

Heterogeneous Transfer Learning

- Does not require similar tasks
- Maps T_i, T_t → T_c
- Computations and information transfer performed in higher complexity T_ space
- Maps back down to T_t

02 Rationale

A New Perspective: Generative Modeling

• Estimating join distributions p(x, y)instead of conditional distributions $\mathbb{B}(\mathbb{B} \setminus \mathbb{S})$ models to uncover latent structures within data that are consistent across disparate tasks

• Core Idea: $p(x,y,c) \sim z ext{ with } y, x \perp c | z|$

• Probability Decomposition: $p(y|x,c) = \int_{z} dZ p(y|x,z)p(z|c)$

A look at z through a biological lens

03 Implementation

Core Idea

 $P(\mathbf{Y} \mid X, \mathbb{C}) = \int_{\theta} P(\mathbf{Y} \mid X, \theta) \cdot P(\theta \mid X, \mathbb{S}) \cdot P(\mathbb{S} \mid \mathbf{R}) \cdot P(\mathbf{R} \mid \mathbb{C}) d\theta$

Mechanism for Information Transfer

04 Experiments

Synthetic Data

CTL Loss vs CR Loss over Number of Predictor Features with Best Fit Lines

Rosmap Alzheimer's Dataset

- Alzheimer's disease (AD) is a progressive neurodegenerative disorder
- Highly heterogeneous making prediction and diagnosis challenging
- ROSMAP dataset contains extensive genomic data
- We seek to use CTL to make better predictions of alzheimer and gain a better understanding of underlying drivers

Kellis Lab https://compbio.mit.edu/

Performance

	Classification		Regression
	Correct Classifications	Incorrect Classifications	Mean Squared Error Loss
Population	30	56	0.4531
Contextualized	47	39	0.3652
CTL (ours)	56	30	0.2817

Analyzing Sample Specific Models

(b) Contextualized Transfer Learning

Elucidating Importance of Context

Contextualized Learning

Contextualized Transfer Learning

Genetic Importance for Sample Specific Models

Contextualized Learning

Contextualized Transfer Learning

05 Future Work

 Formalize proof for Convex Hull
Optimization for
Archetype Dictionary
and implement it

Acknowledgements

I would like to sincerely thank the following people:

- Prof. Lengerich (my mentor)
- Prof. Kellis (PI of the Lab)
- Dr. Gerovitch, Prof. Devadas, and rest of MIT Primes team for giving me this opportunity
- My parents

Questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution

References

[I] C. N. Ellington *et al.*, "Contextualized Networks Reveal Heterogeneous Transcriptomic Regulation in Tumors at Sample-Specific Resolution," *bioRxiv (Cold Spring Harbor Laboratory)*, Dec. 2023, doi: <u>https://doi.org/10.1101/2023.12.01.569658</u>.

[2] B. Lengerich, I, C. Ellington, A. Rubbi, M. Kellis, and E. Xing, "Contextualized Machine Learning," 2023. Available: <u>https://arxiv.org/pdf/2310.11340</u>

[3] B. Lengerich, C. Ellington, B. Aragam, E. P. Xing, and M. Kellis, "NOTMAD: Estimating Bayesian Networks with Sample-Specific Structures and Parameters," *arXiv:2111.01104 [cs, stat]*, Nov. 2021, Available: <u>https://arxiv.org/abs/2111.01104</u>

[4] B. Lengerich, B. Aragam, and E. P. Xing, "Learning Sample-Specific Models with Low-Rank Personalized Regression," *arXiv.org*, 2019. https://arxiv.org/abs/1910.06939 (accessed Oct. 10, 2024).