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Introduction to Personalized Medicine

Patient Specific
Understanding



The Response: Contextualized Learning
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Ellington Et. Al 2023 https://www.biorxiv.org/content/10.1101/2023.12.01.569658V1.full.pdf
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Resource Scarcity in Biomedical Contexts

Data Availability Biological Availability

e Hospitals only have a
small, local amount of
information to make
triage decisions

o Covid
o ICU Availability
o Treatment Priorities

e \Very hard to take samples
from organs

e Some organs (like the
brain) can only be
observed once -
postmortem

\-




General Problem

This seemingly medical problem turned into a...
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Current Transfer Learning

e Traditional Transfer Learning
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Rationale




A New Perspective: Generative Modeling

e Estimating join distributions p(z,y)
instead of conditional distributions BllWwa)
models to uncover latent structures
within data that are consistent across
disparate tasks

® Coreldea: p(z,y,c) ~ z with y,z L c|z

e Probability Decomposition:

p(ylz,c) = [, dZp(y|z, z)p(z|c)
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A look at z through a biological lens

l Physical Features
transcription
factor

Genetic
franscription transcription
factor factor

gl Expression Levels
Unique biological
fingerprint
- J

~
Finite Set of Shared Regulators
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Implementation




Core Idea
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Sample Specific Model Refined
Model Generator Super Subtype Context

P(Y|X,C)= [, P(Y|X,0)-P(0| X,S)- P(S|R)- P(R | C)d#



Mechanism for Information Transfer
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Experiments
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Rosmap Alzheimer's Dataset

X | X X Cohort of 427 ROSMAP study participants
o Alzheimer'sdisease (AD) S8 BaBaBaBaBeBaBaBaBalalal B 0.0 m.u.u.0.0.5.0

progressive neurodegenerative AR AR AR AR AR AR AR AR A RE
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extensive genomic data
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and gain a better

understanding of underlying
drivers Kellis Lab https:/compbio.mitedu/
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https://compbio.mit.edu/

Performance

Classification Regression
Correct Classifications | Incorrect Classifications | Mean Squared Error Loss
Population 30 56 0.4531
Contextualized 47 39 0.3652
CTL (ours) 56 30 0.2817




Analyzing Sample Specific Models
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Elucidating Importance of Context

Context Attribute 2 Context Attribute 2
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Genetic Importance for Sample Specific Models

Top 50 Most Important Genetic Features
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Future Work




e Formalize proof for
Convex Hull
Optimization for
Archetype Dictionary
and implement it
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Questions?

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, and
infographics & images by Freepik

Please keep this slide for attribution
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